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Abstract. A recursive algorithm to determine the backbone of the two-dimensional percolat- 
ing cluster is adjusted to measure the fractal properties of the backbone of the three- 
dimensional percolating cluster. The specific properties measured are the fractal dimension- 
ality of the backbone, dFB= 1.75 iO.04, the chemical dimensionality, d, = 1.26i0.03, and 
the minimum path dimensionality dmi, = 1.39zt0.03. 

Recently developed algorithms have been used to measure the fractal properties of 
the percolating backbone in two dimensions (Laidlaw et a1 1987, h e c h  and Rammal 
1983) and in both two and three dimensions (Herrmann et a1 1984). The two- 
dimensional results reported by Laidlaw et a1 are in excellent agreement with other 
existing numerical values (see, e.g., table 1 of Hong and Stanley (1983) for a summary 
of numerical results prior to 1983). Sahimi (1984) postulated a scaling relation for the 
backbone exponent, B e  

B ( P )  - ( P  - P c ) p s  P ’ P C  (1) 

where p is the fraction of occupied sites, pc  the percolation threshold and B ( p )  the 
number of sites belonging to the backbone. The scaling relation is 

p B  = f( vd + 3p) - 1 (2) 

where v is the correlation length exponent, p describes how the fraction of sites 
belonging to the infinite cluster varies where ( p  - p c ) ,  and d is the dimensionality of 
Euclidean space. The fractal dimensionality of the backbone, dFB, is related to pB by 
d,BB= d -pB/v (Kirkpatrick 1978, Stauffer 1985) and for two dimensions the predicted 
value is 1 S94, whilst the value reported by Laidlaw et a1 is 1.61 * 0.01. The correspond- 
ing prediction for three dimensions is -1.91. 

The random-site percolation cluster is grown by the Leath algorithm (Leath 1976) 
on the simple cubic lattice at p c =  0.3117 (Heermann and Stauffer 1981). The recursive 
algorithm to determine the backbone is implemented in two steps. In the first the 
cluster is described in terms of a tree-like structure and a path constructed between 
the endpoints. The second step constructs the backbone by adding linear segments of 
the cluster to the growing backbone. The segments added are those that can be attached 
to the growing backbone at two distinct points. This procedure, which is implemented 
in a recursive manner, is continued until no further growth is possible. Further details 
of the algorithm may be found in Laidlaw et a1 (1987). 
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Figure 1 shows the variation of the mass ( M )  and radius of gyration (R,) with 

The following exponents are defined: 
chemical distance t (Middlemiss et a1 1980) for values of t from 10 to 80. 

M - td‘ R,-  t u  (v’ = 1ldmin) 

M - RiYB dFB= d,/v’. 

A least-squares fit of the data yielded d,  = 1.26*0.03, v’ = 0.72*0.01 and dFB= 
1.75 * 0.04. The error bars were determined by observing the effects of including the 
smallest value of t.  The variation of M and R, with t shows no systematic finite-size 
effects for t > 15 and the error bars are perhaps reliable. However, it is impossible to 
exclude, as with all simulations, that larger systems may lead to a new systematic trend. 

The fractal dimensionality of the backbone is in excellent agreement with the direct 
measurement of Herrmann et a1 (1984) ( d F B  = 1.77) and also with the extrapolated 
result of Herrmann and Stanley (1984) from the measurement of volatile fractals 
( d y B  = 1.74). In three dimensions we do not find the same measure of agreement with 
Sahimi ( d F B  = 1.91). The value obtained for dmi ,  is in good agreement with the results 
of Herrmann et a1 (1984) (d,,, = 1.35). 

To summarise, we have applied the algorithm of Laidlaw et a1 to construct the 
backbone of the percolation cluster in three dimensions. We find dFB = 1.75 + 0.04, 
d,  = 1.26 * 0.03 and dmi ,  = 1.39 * 0.03. 

We thank D Laidlaw and G MacKay for programming advice. NJ is supported by 
NSERC of Canada and UCR of St Francis Xavier University. 

Figure 1. Log-log plot of the variation of mass (0)  and radius of gyration squared ( x )  
with chemical distance (10-80). The respective slopes lead to a chemical dimensionality, 
d, ,  of 1.26*0.03 and a minimum path dimensionality, d, , , ,  of 1.39+0.03. The variation 
of mass with radius of gyration squared (1-100) is shown by (0) and the corresponding 
fractal dimensionality, d,BB, is 1.75 50.04. 
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